

Deployment of two Cross-Polarized Systems in the ATG Band

Presentation to FCC

Prepared by

October 20, 2004

Introduction

- → New AirCell-Boeing Proposal:
- → Offers two competitive licenses with:
 - broadband service delivery capabilities
 - deck-to-deck coverage
 - simplified "sharing rules"
 - Airfone could keep all existing sites if licensee

Analysis

- Monte Carlo approach using sophisticated Matlab-based system simulation tools
- no inter-system interference impact sites can provide full broadband data rates
- aircraft attitude changes don't have significant impact

AirCell Two Carrier Scenario

- Utilizes cross-polarization to provide isolation between carriers
 - AirCell tests and operational experience show 12-15 dB (or more) isolation between horizontally polarized and vertically polarized systems
- Utilize frequency offset isolation, once legacy narrowband system is discontinued
 - Provides additional isolation between the two systems (2.2 dB)
- Isolation sufficient to allow two systems to operate with virtually no intersystem impacts
 - both broadband
 - both deck-to-deck

Two Carrier Spectrum Plan

System	Pol	Initial Chan	nels (MHz)	Final Channels (MHz)		
System	1 01	Ground	Air	Ground	Air	
Existing	V	850.50 - 851.00	895.50 - 896.00	-		
System 1	V	849.00 - 851.50	894.00 - 895.50	849.00 - 851.50	894.00 - 895.50	
System 2	Н	849.00 - 851.50	894.00 - 895.50	849.50 - 851.00	894.50 - 896.00	

894.00

849.00 849.50 G to A (MHz) 850.50 851.00

G BB System 1 (V) G

G BB System 2 (H) G

1500 KHz

A to G (MHz)

895.50

896.00

894.50

G = Guardband BB = Broadband NB = Narrowband

G = Guardband BB = Broadband NB = Narrowband

Initial plan, with narrowband system still in operation

Final plan, after narrowband system operation discontinued

Polarization Isolation

Illustration of forward link interference reduction on cross-polarized systems

- Without isolation technique, interference could occur on both FWD and REV link:
 - FWD to FWD
 - REV to REV
- Interference reduced by polarization isolation
- Effect not the same on FWD link Pilot and Traffic Channels
- REV link interference "near-far" problem

Near-Far Interference

Illustration of forward link interference on cross-polarized systems

- Primarily a potential issue on REV link
- Interference minimized
 - if signal levels from "home" and "foreign" aircraft arrive at similar levels, and
 - XP is sufficient to assure that foreign signals do not have interference impact
- When base stations of two systems are located nearby, power control mechanisms maintain similar signal levels

Simulation Results

- Negligible overall impact on performance of either system
 - Forward link SINR impact <1.2 dB 99% of time for cross-country
 - Forward link SINR impact <2.0 dB 99% of time for airport
 - Reverse link noise rise <0.5 dB 99% at 50% pole point loading (both scenarios)
 - Reverse link noise rise <2.0 dB 99% at 75% pole point loading (both scenarios)

Rule Requirements

- Sites serving same airspace located within 2 miles of each other
 - Licensees can leverage existing reference site list for ATG service to minimize any issues related to agreeing on site locations
 - Airfone can keep all current sites
 - New sites may be added by mutual agreement of licensees
- Carriers must maintain similar coverage from nearby sites
 - Similar antennas and transmit powers
- Carriers have option to build/not build any particular site
 - Transmitters control potential for near-far interference from low altitude aircraft

Observations and Conclusions

- Two systems can operate in ATG band using cross polarization isolation with no impact on either carrier's ability to provide full broadband and deck-to-deck coverage
- Spectrum offset will provide additional "margin of safety" when narrowband service transition is completed
- → Eliminates Airfone's concern re Naval radar (no reverse banding)
- No advanced hardware required
 - v-pol and h-pol antennas already in service for ATG
 - + terrestrial mobile data equipment readily adaptable
- Aircraft maneuvers will not disrupt polarization isolation
- Minimal, simplified rules

BACKUP SLIDES

General simulation parameters

Parameter	Value	Unit	Description		
SIM_TIME	7200	Seconds	Duration of the simulation time		
TIME_STEP	2	Seconds	Increment of the simulation time		
$\frac{IIME_SIEI}{f}$	870	MHz	Average operating frequency		
NumCallsAC	10	-	Average number of voice calls per aircraft of the first		
NumCallsAF	10		Average number of voice calls per aircraft of the		
W	1.2288e6		Chip rate for 1xEvDO system		
Zmin	$0^1, 11000^2$	feet	Minimum aircraft altitude		
Zmax	40000	feet	Maximum aircraft altitude		
Vmin	380 ² , 180 ¹	knots	Minimum velocity of the aircraft		
Vmax	$450^2, 250^1$	knots	Maximum velocity of the aircraft		
MinVerSep	1000	feet	Minimum vertical separation between aircraft		
•			*		
MinHorSep	5	nm	Minimum horizontal separation between aircraft		
VAF	0.5	-	Average voice activity		
FL_IF_Scaling	1	-	Scaling of the interference due to partial overlap		
BS.PA_power	20	W	Base station transmit power		
BS.NF	4	dB	Base station noise figure		
BS.DL_CL	3	dB	Forward link cable losses		
BS.UL_CL	3	dB	Reverse link cable losses		
MS.PA_power	23	dBm	Mobile station transmit power		
MS.NF	8	dB	Noise figure of the mobile		
MS.EbNt	4	dB	Required Eb/Nt for the reverse link		
R	100^{2}	miles	Cell site radius		
Pol_Izol	12	dB	Cross-polarization isolation		
\overline{AG}	$9^2/12^1$	dB	Antenna gain		

¹ airport scenario; ² cross-country scenario

Results – cross country scenario

Percent of time	10 %			1%		
Loading	25%	50%	75%	25%	50%	75%
Degradation in SINR [dB]	0.7	0.70	0.7	1.1	1.2	1.2
Increase in TX power [dB]	0	0.25	0.9	0.13	0.4	1.8
Increase in the NR [dB]	0.08	0.25	0.9	0.13	0.4	1.8

Results – Airport scenario

Percent of time	10%			1%		
Loading	25%	50%	75%	25%	50%	75%
Degradation in SINR [dB]	1.3	1.3	1.3	2.0	2.0	2.0
Increase in TX power [dB]	0.0	0.25	0.65	0.17	0.5	2.0
Increase in the NR [dB]	0.09	0.25	0.65	0.17	0.5	2.0

Impact of aircraft maneuvers

Analysis by Boeing for sample of aircraft over variety of airports

- Evaluated pitch and roll for cross country routes and for vicinity of airports
 - greatest orientation change will be from roll in vicinity of airports roll is less than 14° 97% of the time, less than 20° 98.8% of the time.
- Polarization isolation of 12 dB or more is achieved for more than 99% of time

14

Cross Country XP simulator

Topology of the inter-system test bed for cross-country scenario

Simulation parameters

- Omni-directional sites
- One network H-pol, other network V-pol
- Antenna patterns with envelope of current aircell antenna
- Altitudes 18,000 40,000 feet
- Average of 10 voice calls per plane
- Three different loading scenarios

_oading [%]	Number of aircraft
25	4
50	8
75	12

Airport Scenario XP simulator

Topology of the inter-system test bed for airport scenario

Simulation parameters

- Omni sites
- One network H-pol, other network V-pol
- Antenna patterns with envelope of current aircell antenna
- Altitudes 0 40,000 feet, constrained by approach/departure routes
- 10 voice calls per plane
- Three different loading scenarios:

Loading [%]	Number of aircraft
25	4
50	8
75	12

Results – Airport scenario - 10 dB XPD

Percent of time	10%			1%		
Loading	25%	50%	75%	25%	50%	75%
Degradation in	1.8	1.8	2.0	2.9	2.9	2.9
SINR [dB]						
Increase in TX	0.14	0.35	1.1	0.21	0.75	3.5
power [dB]						
Increase in the NR	0.14	0.25	1.1	0.22	0.75	3.2
[dB]						

Results – Airport scenario - 8 dB XPD

Percent of time	10%			1%		
Loading	25%	50%	75%	25%	50%	75%
Degradation in SINR [dB]	1.9	2.0	2.1	3.6	3.7	3.8
Increase in TX power [dB]	0.22	0.66	2.1	0.36	1.3	4.2
Increase in the NR [dB]	0.22	0.57	2.0	0.35	1.2	4.0